Ancestral Mutation in Telomerase Causes Defects in Repeat Addition Processivity and Manifests As Familial Pulmonary Fibrosis

نویسندگان

  • Jonathan K. Alder
  • Joy D. Cogan
  • Andrew F. Brown
  • Collin J. Anderson
  • William E. Lawson
  • Peter M. Lansdorp
  • John A. Phillips
  • James E. Loyd
  • Julian J.-L. Chen
  • Mary Armanios
چکیده

The telomerase reverse transcriptase synthesizes new telomeres onto chromosome ends by copying from a short template within its integral RNA component. During telomere synthesis, telomerase adds multiple short DNA repeats successively, a property known as repeat addition processivity. However, the consequences of defects in processivity on telomere length maintenance are not fully known. Germline mutations in telomerase cause haploinsufficiency in syndromes of telomere shortening, which most commonly manifest in the age-related disease idiopathic pulmonary fibrosis. We identified two pulmonary fibrosis families that share two non-synonymous substitutions in the catalytic domain of the telomerase reverse transcriptase gene hTERT: V791I and V867M. The two variants fell on the same hTERT allele and were associated with telomere shortening. Genealogy suggested that the pedigrees shared a single ancestor from the nineteenth century, and genetic studies confirmed the two families had a common founder. Functional studies indicated that, although the double mutant did not dramatically affect first repeat addition, hTERT V791I-V867M showed severe defects in telomere repeat addition processivity in vitro. Our data identify an ancestral mutation in telomerase with a novel loss-of-function mechanism. They indicate that telomere repeat addition processivity is a critical determinant of telomere length and telomere-mediated disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation

Protection of telomeres (POT1) binds chromosome ends, recognizing single-strand telomeric DNA via two oligonucleotide/oligosaccharide binding folds (OB-folds). The Arabidopsis thaliana POT1a and POT1b paralogs are atypical: they do not exhibit telomeric DNA binding, and they have opposing roles in regulating telomerase activity. AtPOT1a stimulates repeat addition processivity of the canonical t...

متن کامل

Pulmonary fibrosis associated with TINF2

We read with great interest the case reported by FUKUHARA et al. [1] of a 43-year-old female patient with dyskeratosis congenita, pulmonary fibrosis and heterozygous mutation in TINF2 (telomerase repeat binding factor 1-interacting nuclear factor 2). TIN2, the TINF2 gene product, TERT (telomere reverse transcriptase) and TERC (telomerase RNA component) participate in the regulation of telomere ...

متن کامل

Telomerase mutations in families with idiopathic pulmonary fibrosis.

BACKGROUND Idiopathic pulmonary fibrosis is progressive and often fatal; causes of familial clustering of the disease are unknown. Germ-line mutations in the genes hTERT and hTR, encoding telomerase reverse transcriptase and telomerase RNA, respectively, cause autosomal dominant dyskeratosis congenita, a rare hereditary disorder associated with premature death from aplastic anemia and pulmonary...

متن کامل

A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity

Telomerase is a specialized reverse transcriptase that adds telomeric DNA repeats onto chromosome termini. Here, we characterize a new telomerase-specific motif, called motif 3, in the catalytic domain of telomerase reverse transcriptase, that is crucial for telomerase function and evolutionally conserved between vertebrates and ciliates. Comprehensive mutagenesis of motif 3 identified mutation...

متن کامل

Modeling and structure function analysis of the putative anchor site of yeast telomerase

Telomerase is a ribonucleoprotein reverse transcriptase responsible for extending one strand of the telomere terminal repeats. Unique among reverse transcriptases, telomerase is thought to possess a DNA-binding domain (known as anchor site) that allows the enzyme to add telomere repeats processively. Previous crosslinking and mutagenesis studies have mapped the anchor site to an N-terminal regi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011